Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Transl Med ; 21(1): 586, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37658364

RESUMO

BACKGROUND: As the most lethal gynecologic cancer, ovarian cancer (OV) holds the potential of being immunotherapy-responsive. However, only modest therapeutic effects have been achieved by immunotherapies such as immune checkpoint blockade. This study aims to propose a generalized stroma-immune prognostic signature (SIPS) to identify OV patients who may benefit from immunotherapy. METHODS: The 2097 OV patients included in the study were significant with high-grade serous ovarian cancer in the III/IV stage. The 470 immune-related signatures were collected and analyzed by the Cox regression and Lasso algorithm to generalize a credible SIPS. Correlations between the SIPS signature and tumor microenvironment were further analyzed. The critical immunosuppressive role of stroma indicated by the SIPS was further validated by targeting the major suppressive stroma component (CAFs, Cancer-associated fibroblasts) in vitro and in vivo. With four machine-learning methods predicting tumor immune subtypes, the stroma-immune signature was upgraded to a 23-gene signature. RESULTS: The SIPS effectively discriminated the high-risk individuals in the training and validating cohorts, where the high SIPS succeeded in predicting worse survival in several immunotherapy cohorts. The SIPS signature was positively correlated with stroma components, especially CAFs and immunosuppressive cells in the tumor microenvironment, indicating the critical suppressive stroma-immune network. The combination of CAFs' marker PDGFRB inhibitors and frontline PARP inhibitors substantially inhibited tumor growth and promoted the survival of OV-bearing mice. The stroma-immune signature was upgraded to a 23-gene signature to improve clinical utility. Several drug types that suppress stroma-immune signatures, such as EGFR inhibitors, could be candidates for potential immunotherapeutic combinations in ovarian cancer. CONCLUSIONS: The stroma-immune signature could efficiently predict the immunotherapeutic sensitivity of OV patients. Immunotherapy and auxiliary drugs targeting stroma could enhance immunotherapeutic efficacy in ovarian cancer.


Assuntos
Síndrome de DiGeorge , Neoplasias Ovarianas , Feminino , Animais , Camundongos , Humanos , Receptor beta de Fator de Crescimento Derivado de Plaquetas , Prognóstico , Neoplasias Ovarianas/tratamento farmacológico , Imunossupressores , Imunoterapia , Microambiente Tumoral
2.
Front Immunol ; 13: 854730, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35281059

RESUMO

Cancer therapy has been an important and popular area in cancer research. With medical technology developing, the appearance of various targeted drugs and immunotherapy offer more choices to cancer treatment. With the increase in drug use, people have found more and more cases in which tumors are resistant to DNA damage repair (DDR)-based drugs. Recently, the concept of combination therapy has been brought up in cancer research. It takes advantages of combining two or more therapies with different mechanisms, aiming to benefit from the synergistic effects and finally rescue patients irresponsive to single therapies. Combination therapy has the potential to improve current treatment of refractory and drug-resistant tumors. Among the methods used in combination therapy, DDR is one of the most popular methods. Recent studies have shown that combined application of DDR-related drugs and immunotherapies significantly improve the therapeutic outcomes of malignant tumors, especially solid tumors.


Assuntos
Dano ao DNA , Neoplasias , Reparo do DNA , Humanos , Fatores Imunológicos/uso terapêutico , Imunoterapia/métodos , Neoplasias/tratamento farmacológico , Neoplasias/terapia
3.
Front Oncol ; 11: 763696, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34868983

RESUMO

Optic nerve hemangioblastoma is a very rare benign tumor with only 39 reported cases by now. It appears to be hyperintense on T2-weighted images with a significant enhancement on contrast scans, which are similar to glioma and meningioma. Due to the lack of specificity in MRI manifestations, optic nerve hemangioblastoma is often misdiagnosed. To provide new insights into differential diagnosis of optic nerve hemangioblastoma, we report for the first time an optic nerve hemangioblastoma case employing advanced magnetic resonance techniques including diffusion-weighted imaging (DWI), apparent diffusion coefficient (ADC) maps, and magnetic resonance angiography (MRA). In addition, we have collected all reported optic nerve hemangioblastoma cases and reviewed their neuroimaging findings by MRI and angiography. Our results show that solid-type tumor is the dominant form of optic nerve hemangioblastoma and extensive edema is widely observed. These findings are surprisingly contrary to manifestations of cerebellar hemangioblastoma. Besides the structural features, quantitative indexes including ADC and relative cerebral blood volume (rCBV) ratio, which are significantly elevated in cerebellar hemangioblastoma, may also shed a light on the preoperative diagnosis of hemangioblastoma of optic nerve. Finally, we discuss the critical neuroimaging features in the differential diagnosis between optic nerve hemangioblastoma from optic pathway glioma and optic nerve sheath meningioma.

4.
Nat Commun ; 11(1): 2834, 2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32503981

RESUMO

Recruitment of DNA repair proteins to DNA damage sites is a critical step for DNA repair. Post-translational modifications of proteins at DNA damage sites serve as DNA damage codes to recruit specific DNA repair factors. Here, we show that mRNA is locally modified by m5C at sites of DNA damage. The RNA methyltransferase TRDMT1 is recruited to DNA damage sites to promote m5C induction. Loss of TRDMT1 compromises homologous recombination (HR) and increases cellular sensitivity to DNA double-strand breaks (DSBs). In the absence of TRDMT1, RAD51 and RAD52 fail to localize to sites of reactive oxygen species (ROS)-induced DNA damage. In vitro, RAD52 displays an increased affinity for DNA:RNA hybrids containing m5C-modified RNA. Loss of TRDMT1 in cancer cells confers sensitivity to PARP inhibitors in vitro and in vivo. These results reveal an unexpected TRDMT1-m5C axis that promotes HR, suggesting that post-transcriptional modifications of RNA can also serve as DNA damage codes to regulate DNA repair.


Assuntos
DNA (Citosina-5-)-Metiltransferases/metabolismo , Quebras de DNA de Cadeia Dupla , Recombinação Homóloga , Processamento Pós-Transcricional do RNA/genética , RNA Mensageiro/metabolismo , Animais , Linhagem Celular Tumoral , Citosina/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , Resistencia a Medicamentos Antineoplásicos/genética , Técnicas de Silenciamento de Genes , Humanos , Metilação , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , RNA Interferente Pequeno/metabolismo , Rad51 Recombinase/metabolismo , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Nat Commun ; 11(1): 1899, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32313005

RESUMO

Genomic DNA is folded into a higher-order structure that regulates transcription and maintains genomic stability. Although progress has been made on understanding biochemical characteristics of epigenetic modifications in cancer, the in-situ higher-order folding of chromatin structure during malignant transformation remains largely unknown. Here, using optimized stochastic optical reconstruction microscopy (STORM) for pathological tissue (PathSTORM), we uncover a gradual decompaction and fragmentation of higher-order chromatin folding throughout all stages of carcinogenesis in multiple tumor types, and prior to tumor formation. Our integrated imaging, genomic, and transcriptomic analyses reveal functional consequences in enhanced transcription activities and impaired genomic stability. We also demonstrate the potential of imaging higher-order chromatin disruption to detect high-risk precursors that cannot be distinguished by conventional pathology. Taken together, our findings reveal gradual decompaction and fragmentation of higher-order chromatin structure as an enabling characteristic in early carcinogenesis to facilitate malignant transformation, which may improve cancer diagnosis, risk stratification, and prevention.


Assuntos
Carcinogênese/patologia , Cromatina/patologia , Processamento de Imagem Assistida por Computador , Microscopia de Fluorescência/métodos , Neoplasias/diagnóstico por imagem , Animais , Biofísica , Epigênese Genética , Genoma , Heterocromatina , Humanos , Masculino , Camundongos , Neoplasias/patologia , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Transcriptoma
6.
Nucleic Acids Res ; 48(3): 1285-1300, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31777915

RESUMO

Reactive oxygen species (ROS) inflict multiple types of lesions in DNA, threatening genomic integrity. How cells respond to ROS-induced DNA damage at telomeres is still largely unknown. Here, we show that ROS-induced DNA damage at telomeres triggers R-loop accumulation in a TERRA- and TRF2-dependent manner. Both ROS-induced single- and double-strand DNA breaks (SSBs and DSBs) contribute to R-loop induction, promoting the localization of CSB and RAD52 to damaged telomeres. RAD52 is recruited to telomeric R-loops through its interactions with both CSB and DNA:RNA hybrids. Both CSB and RAD52 are required for the efficient repair of ROS-induced telomeric DSBs. The function of RAD52 in telomere repair is dependent on its ability to bind and recruit POLD3, a protein critical for break-induced DNA replication (BIR). Thus, ROS-induced telomeric R-loops promote repair of telomeric DSBs through CSB-RAD52-POLD3-mediated BIR, a previously unknown pathway protecting telomeres from ROS. ROS-induced telomeric SSBs may not only give rise to DSBs indirectly, but also promote DSB repair by inducing R-loops, revealing an unexpected interplay between distinct ROS-induced DNA lesions.


Assuntos
DNA Helicases/genética , DNA Polimerase III/genética , Enzimas Reparadoras do DNA/genética , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Telômero/genética , Quebras de DNA de Cadeia Dupla , Quebras de DNA de Cadeia Simples , Reparo do DNA/genética , Replicação do DNA/genética , Proteínas de Ligação a DNA/genética , Células HeLa , Humanos , Estruturas R-Loop , Espécies Reativas de Oxigênio/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/genética , Fatores de Transcrição/genética
7.
Nat Commun ; 9(1): 4115, 2018 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-30297739

RESUMO

Actively transcribed regions of the genome are protected by transcription-coupled DNA repair mechanisms, including transcription-coupled homologous recombination (TC-HR). Here we used reactive oxygen species (ROS) to induce and characterize TC-HR at a transcribed locus in human cells. As canonical HR, TC-HR requires RAD51. However, the localization of RAD51 to damage sites during TC-HR does not require BRCA1 and BRCA2, but relies on RAD52 and Cockayne Syndrome Protein B (CSB). During TC-HR, RAD52 is recruited by CSB through an acidic domain. CSB in turn is recruited by R loops, which are strongly induced by ROS in transcribed regions. Notably, CSB displays a strong affinity for DNA:RNA hybrids in vitro, suggesting that it is a sensor of ROS-induced R loops. Thus, TC-HR is triggered by R loops, initiated by CSB, and carried out by the CSB-RAD52-RAD51 axis, establishing a BRCA1/2-independent alternative HR pathway protecting the transcribed genome.


Assuntos
DNA Helicases/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Recombinação Homóloga , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transcrição Gênica , Sequência de Aminoácidos , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Sequência de Bases , Linhagem Celular Tumoral , DNA/genética , DNA/metabolismo , Dano ao DNA , DNA Helicases/genética , Reparo do DNA , Enzimas Reparadoras do DNA/genética , Células HEK293 , Humanos , Proteínas de Ligação a Poli-ADP-Ribose/genética , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...